Fairness-Aware Machine Learning for Social Bias

Detection in Healthcare Research Datasets

Motivation

AT models in healthcare can unintentionally discrim-
inate against vulnerable groups. This work aims to
detect and quantity biases in healthcare data and pre-
dictive models before deployment.

e How can researchers identify data-level and
algorithm-level biases?

e How do neural networks compare to traditional
models in balancing accuracy and fairness?

Introducing the Social Bias
Detection Tool

We present a lightweight, interactive tool to:

e Detect bias in healthcare data and models
e Compute fairness metrics (SPD, EOD, DD)

e Compare traditional ML vs neural nets on both
accuracy and fairness

e OQutput a “combined score” for model selection
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Figure 1:Architectural overview of the Social Bias Detection

framework

Data-Level Bias Exists, Even
Before Training

We evaluated two real-world healthcare datasets:
SyntheticMass:

¢ 83.6% White patients — major racial imbalance

e Age disparity: SPD = 0.82 for 0-35 vs 65+
(substantial )

Brain Stroke Dataset:

e Demographics more balanced overall
e One exception: SPD = 0.10 for 65+ vs 51-65

Demographic Disparity (DD)
Identifies groups disproportionately facing negative outcomes.

DD Analysis for RACE:

Group Population % Unfavorable Outcome %

0 white 0.8361 0.8392 v Minimal
1 black 0.0891 0.0931 v Minimal
2 asian 0.0682 0.0612 v Minimal

3 native 0.0059 0.0060 v Minimal

4  other 0.0007 0.0005 v Minimal
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Figure 2:Population vs. unfavorable outcomes by race, showing

minimal to moderate pre-training bias.

This shows that bias can be embedded in the data
itself, independent of modeling.
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Fairness Metrics Used

We assess bias using industry-standard metrics:
1. Statistical Parity Difference (SPD)
Difference in favorable outcomes across groups:

SPD=P(Y =1|A=a)—PY =1|A=b)

2. Equal Opportunity Difference (EOD)
(Gap in true positive rates across groups:

EOD =TPR, — TPR,
3. Average Odds Difference (AOD)

Average gap in true and false positive rates:

AOD = }(FPR, — FPR;) + (TPR, — TPRy)

4. Demographic Disparity (DD)
Difference between a group’s outcome share and its
population share:

DD=PA=a|Y =1)— P(A=a)

Interpretation thresholds:

0.00—-0.05: Minimal 0.05—0.10: Small
Substantial bias

> (.10:

How We Compare Models Fairly

High accuracy # fair predictions. We introduce the
Combined Score to balance both.

Combined Score = 0.5 x Normalized Accuracy
+ 0.5 x Fairness Score

where:

SPD)| '[EOD
SPDys]  [EOD e
Lower SPD and EOD values increase the fairness
score, rewarding models that treat groups more
equally.

Fairness Score = 1

How the Tool Works

1. Data-Level Analysis:

e Class imbalance across demographic groups

o Statistical Parity Difference (SPD) between
protected groups

e Demographic Disparity (DD) in outcomes vs.
population share

Select Analysis Parameters

Select protected attributes (e.g., race, gender):

RACE x  ETHNICITY x GENDER x AGE_GROUP Xx

Select target variable:

HEALTHCARE_EXPENSES

Created binary target: HIGH_HEALTHCARE_EXPENSES (1 if > 822483.43, 0 otherwise)

Data-Level Bias Detection

Statistical Parity Demographic Disparity

Class Imbalance Analysis <

Distribution of RACE:

A Underrepresented groups (<10%): black, asian, native, other

Main Findings

e Neural networks generally achieved higher fairness
without sacrificing accuracy.

e ResidualNN scored highest in the SyntheticMass
dataset for balancing both metrics.

e DeepNN achieved near-pertect tairness in Brain
Stroke predictions.

Model Performance Fairness Metrics

Accuracy vs. Fairness Trade-offs

Model Ranking (Balancing Accuracy and Fairness)

Figure 3:Accuracy vs Fairness trade-offs across models

2. Algorithmic Bias Analysis:

e Trains both traditional ML and neural networks

e Evaluates SPD, Equal Opportunity Difference
(EOD), and Average Odds Difference (AOD)

e Computes a Combined Score = 0.5
X Normalized Accuracy + 0.5 X Fairness Score

Model Ranking (Balancing Accuracy and Fairness)

Model Type Accuracy Statistical Parity Difference  Equal Opportunity Diffe

0 ResidualNN Neural Network 0.8492 0.3751 0.7289

1 DeepNN Neural Network 0.8519 0.3767 0.7333
2 AdaBoostClassifier Traditional 0.8899 0.4088 0.8050
3  SimpleNN Neural Network 0.8467 0.4120 0.7642
4 RandomForestClassifier Traditional 0.8975 0.4379 0.8424
5 LGBMClassifier Traditional 0.9010 0.4436 0.8518
6 XGBClassifier Traditional 0.8991 0.4536 0.8601

7 BaggingClassifier Traditional 0.8834 0.4698 0.8606

Best model balancing accuracy and fairness: ResidualNN (Combined Score: 0.5599)

Recommendagtions <>
A The following models have high accuracy but poor fairness: LGBMClassifier

Consider using a more balanced model even if it has slightly lower accuracy.

Key Takeaways

e Bias is present in many healthcare datasets
before training.

e Our tool enables quick, transparent bias
assessment.

e Neural networks can be both accurate and tair.

e The Combined Score metric helps balance ethics
with performance.
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