

Fairness-Aware Machine Learning for Social Bias Detection in Healthcare Research Datasets

Ilerioluwakiye Abolade, Precious Kolawole

ML Collective, Carleton University

Motivation

AI models in healthcare can unintentionally discriminate against vulnerable groups. This work aims to detect and quantify biases in healthcare data and predictive models before deployment.

- How can researchers identify data-level and algorithm-level biases?
- How do neural networks compare to traditional models in balancing accuracy and fairness?

Introducing the Social Bias Detection Tool

We present a lightweight, interactive tool to:

- Detect bias in healthcare data and models
- Compute fairness metrics (SPD, EOD, DD)
- Compare traditional ML vs neural nets on both accuracy and fairness
- Output a “combined score” for model selection

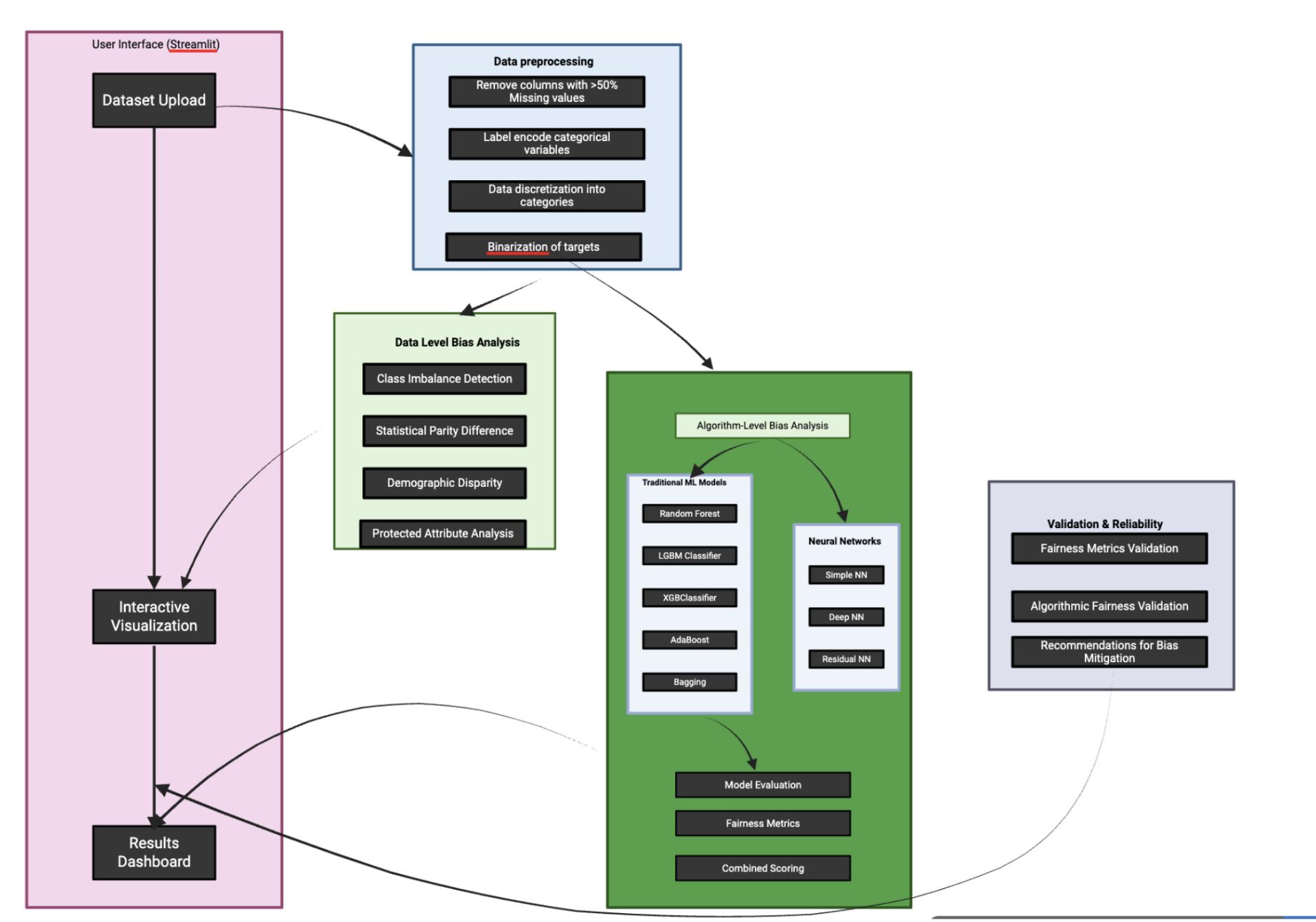


Figure 1: Architectural overview of the Social Bias Detection framework

Data-Level Bias Exists, Even Before Training

We evaluated two real-world healthcare datasets: **SyntheticMass**:

- 83.6% White patients → major racial imbalance
- Age disparity: SPD = 0.82 for 0–35 vs 65+ (substantial)

Brain Stroke Dataset:

- Demographics more balanced overall
- One exception: SPD = 0.10 for 65+ vs 51–65

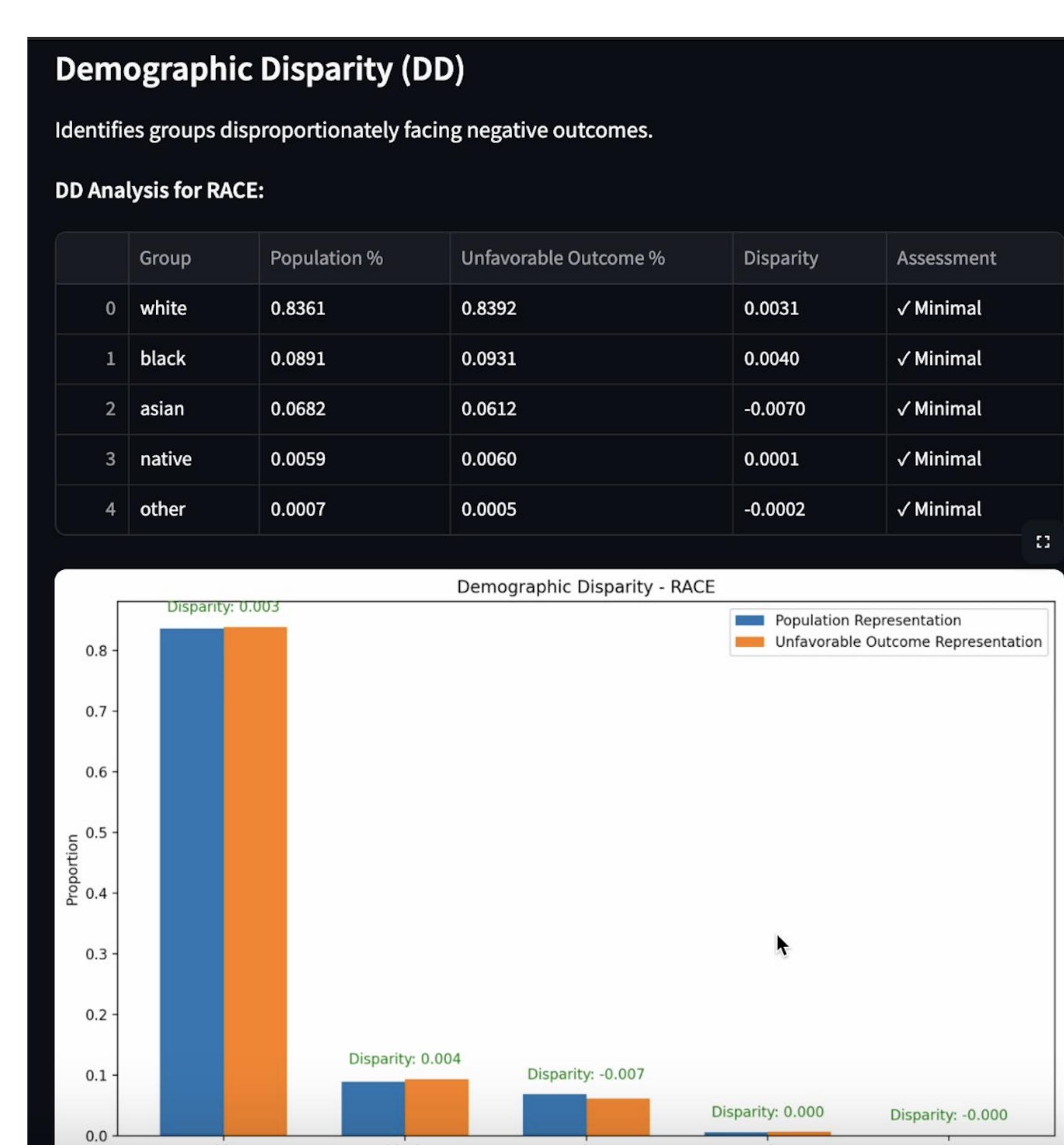


Figure 2: Population vs. unfavorable outcomes by race, showing minimal to moderate pre-training bias.

This shows that bias can be embedded in the data itself, independent of modeling.

Fairness Metrics Used

We assess bias using industry-standard metrics:

1. Statistical Parity Difference (SPD)

Difference in favorable outcomes across groups:

$$\text{SPD} = P(\hat{Y} = 1 \mid A = a) - P(\hat{Y} = 1 \mid A = b)$$

2. Equal Opportunity Difference (EOD)

Gap in true positive rates across groups:

$$\text{EOD} = \text{TPR}_a - \text{TPR}_b$$

3. Average Odds Difference (AOD)

Average gap in true *and* false positive rates:

$$\text{AOD} = \frac{1}{2}[(\text{FPR}_a - \text{FPR}_b) + (\text{TPR}_a - \text{TPR}_b)]$$

4. Demographic Disparity (DD)

Difference between a group's outcome share and its population share:

$$\text{DD} = P(A = a \mid Y = 1) - P(A = a)$$

Interpretation thresholds:

0.00–0.05: Minimal **0.05–0.10:** Small > 0.10 : Substantial bias

How We Compare Models Fairly

High accuracy \neq fair predictions. We introduce the **Combined Score** to balance both.

$$\text{Combined Score} = 0.5 \times \text{Normalized Accuracy} + 0.5 \times \text{Fairness Score}$$

where:

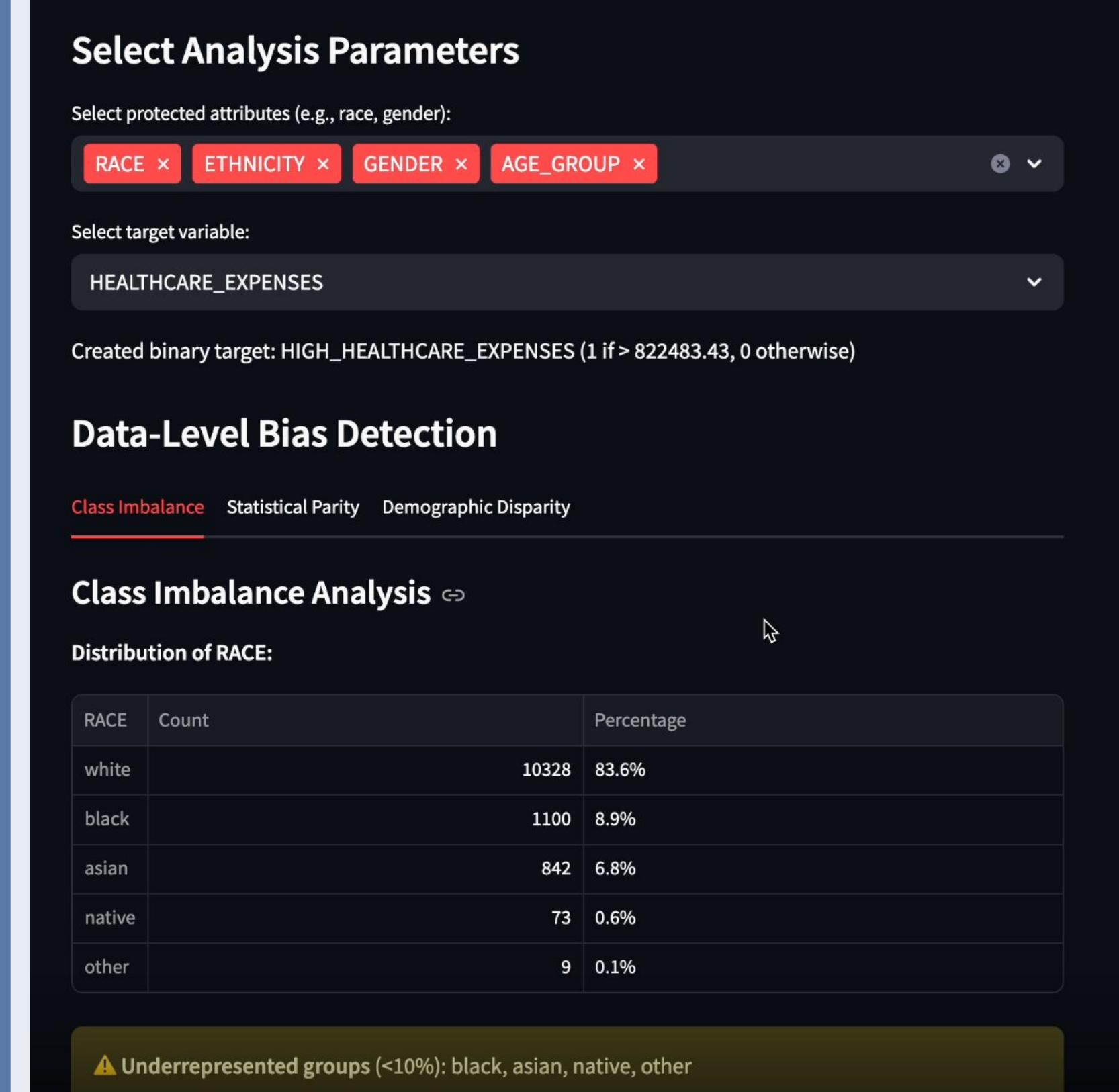
$$\text{Fairness Score} = 1 - \frac{|\text{SPD}|}{|\text{SPD}_{\max}|} - \frac{|\text{EOD}|}{|\text{EOD}_{\max}|}$$

Lower SPD and EOD values increase the fairness score, rewarding models that treat groups more equally.

How the Tool Works

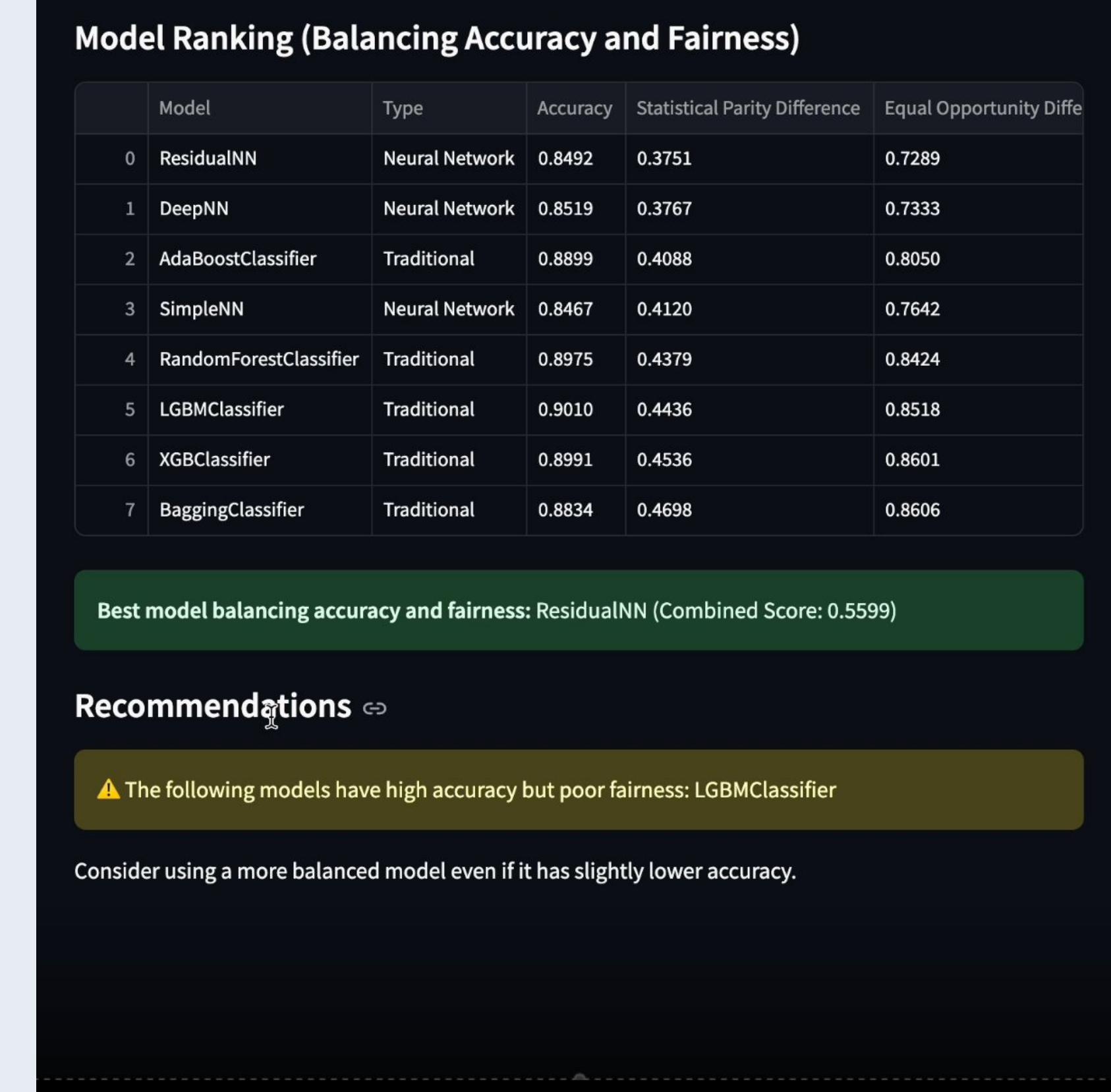
1. Data-Level Analysis:

- Class imbalance across demographic groups
- Statistical Parity Difference (SPD) between protected groups
- Demographic Disparity (DD) in outcomes vs. population share



2. Algorithmic Bias Analysis:

- Trains both traditional ML and neural networks
- Evaluates SPD, Equal Opportunity Difference (EOD), and Average Odds Difference (AOD)
- Computes a **Combined Score** = 0.5 \times Normalized Accuracy + 0.5 \times Fairness Score



Main Findings

- Neural networks generally achieved higher fairness without sacrificing accuracy.
- ResidualNN scored highest in the SyntheticMass dataset for balancing both metrics.
- DeepNN achieved near-perfect fairness in Brain Stroke predictions.

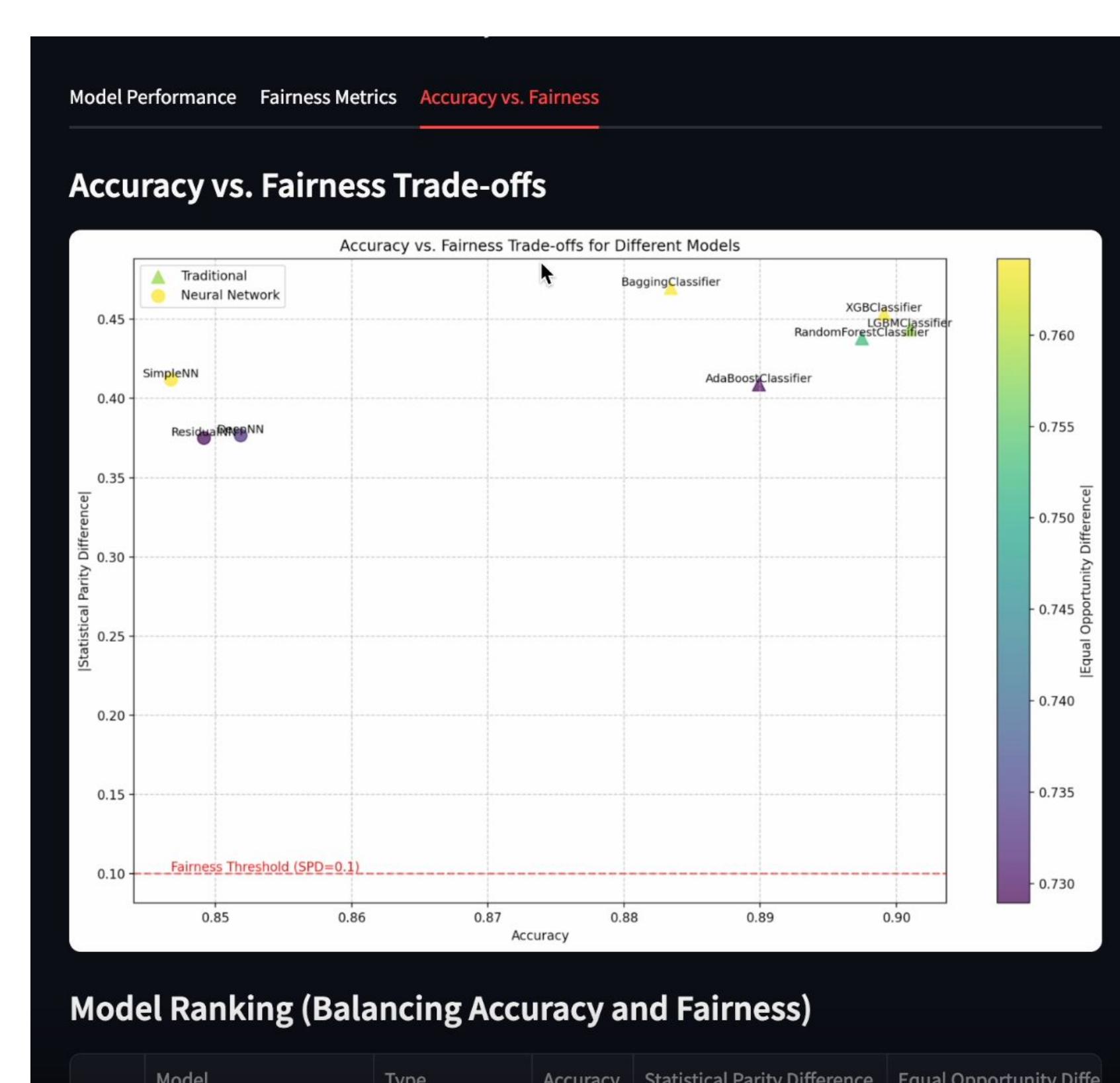


Figure 3: Accuracy vs Fairness trade-offs across models

Key Takeaways

- Bias is present in many healthcare datasets before training.
- Our tool enables quick, transparent bias assessment.
- Neural networks can be both accurate *and* fair.
- The Combined Score metric helps balance ethics with performance.

Acknowledgements

We thank Professor Matthew S. Holden for mentorship and feedback.

Project Repository

github.com/precillieo/social-bias-detection-tool

